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Numerical evidence for the existence of a low-dimensional attractor and its implications
in the rheology of dilute suspensions of periodically forced slender bodies

K. Radhakrishnan, K. Asokan, J. Dasan, C. Chandrashekara Bhat, and T. R. Ramamohan*
Computational Materials Science, Unit-I, Regional Research Laboratory (CSIR), Thiruvananthapuram-695019, India

~Received 26 April 1999!

We provide numerical evidence for the existence of a low-dimensional chaotic attractor in the rheology of
dilute suspensions of slender bodies in a simple shear flow. The rheological parameters which characterize the
stress deformation behavior of the suspension are calculated based on appropriate averages over the orientation
vectors of the slender bodies. The system considered in this work, therefore, exhibits chaos in experimentally
measurable averages over a large number of uncoupled chaotic oscillators. The numerical demonstration that
these parameters may evolve chaotically may thus have important consequences for both chaos theory and
suspension rheology. We also provide plausible explanations for the existence of a low-dimensional chaotic
attractor in the rheological parameters in terms of the expressions for the rheological parameters and the
coupling between individually chaotically evolving orientations and the expressions for the rheological param-
eters.@S1063-651X~99!05712-8#

PACS number~s!: 05.45.2a, 05.70.Fh
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INTRODUCTION

The importance of the field of suspension rheology, b
as a scientific discipline and for its various technologi
applications, has been widely recognized. The propertie
fluid suspensions of small particles depend generally on
nature of the fluid, the properties of the suspension partic
and the degree of isotropy of the suspension. For exam
the physical properties of heterogeneous media like m
alloys, composites, polymer solutions, electrorheological
ids, etc. are influenced mostly by the properties of the c
stituent materials and the manner in which they are dist
uted. In order to obtain a wide variety of properties with t
same constituent materials, it is thus necessary to obta
wide variety of orientation distributions of the constitue
materials. For a complete description of the orientation d
tribution of the particles in a suspension, one must cons
many influencing factors, such as the nature and type of
underlying fluid or flow, particle-particle interactions whic
are a result of the disturbance that the presence of each
ticle in the suspension produces on all the surrounding
ticles in the medium; and the effect of Brownian diffusio
resulting from the bombardment of the suspension parti
by the surrounding fluid molecules. A number of models
suspensions incorporating one or more of these factors h
been proposed to describe the orientations of the particle
a suspension, and various applications of these models
been reported in the literature@1–5#. Szeri and co-workers
discussed the possibility of periodic and quasiperiodic attr
tors for the orientation vectors in two-dimensional tim
dependent flows and in three-dimensional recirculating fl
fields in a series of papers@6–10#. The type of flow fields
they considered in their work do not allow for the possibil
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of chaotic attractors for the evolution of the orientation ve
tors. For the case of two-dimensional time-dependent flo
their equations for the evolution of the orientation vecto
decouple, and hence chaos is not possible. For the th
dimensional flows they studied, the equations of the evo
tion of the orientation vectors can be written in terms o
fundamental matrix governed by a linear set of equatio
with periodic coefficients, and hence these equations do
allow for the possibility of chaos.

Demonstration of chaotic dynamics in suspension rhe
ogy is a recent development, and remains an area as ye
fully explored. Ramamohanet al. @11# were the first to show
that the orientation of slender rods in a simple shear fl
under the action of an external periodic force varies cha
cally for a certain range of values of the parameter cor
sponding to the external force. They also showed that vis
metric material functions, which are indicators of th
collective behavior of all the particles in a suspension, a
exhibit chaotic dynamics when the orientations of individu
particles evolve chaotically.

In this work we explore in more detail certain aspects
the chaotic behavior of the rheological parameters that s
to have broader implications for the collective behavior
spatially extended dynamical systems. The system con
ered, namely, the system of a periodically forced suspen
of orientable particles in a simple shear flow, is a physica
realizable example of a spatially extended system in wh
individual oscillators may evolve chaotically. The mo
popular model systems for studying the time evoluti
mechanisms of spatially extended systems are coupled
lattices, cellular automata, and lattices of coupled ordin
differential equations. However, even for these simple s
tems little is known about the behavior of spatial averag
when the local dynamics is chaotic. Two types of behav
have been noted; in one class of oscillators these aver
settle down to stationary behavior, and in the other they
hibit robust fluctuations. The system we consider in t
work represents an example of a spatially extended syste
individually chaotically varying oscillators, for which suit

:
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able spatial averages~rheological parameters! also evolve
chaotically.

Spatially extended dynamical systems have recently
come a subject of extensive research. There are only a
results in the literature, even for these simple systems, c
cerning the behavior of the spatial averages of such syst
when the local dynamics is chaotic. The possibility of t
spatial averages of individually chaotically varying oscill
tors also varying chaotically has only recently been d
cussed@12#. In this paper, we present numerical evidence
the existence of a low-dimensional chaotic attractor for
rheological parameters of the suspension, with the numbe
orientation vectors varying from 16 to 484. The variation
the number of the orientation vectors from 16 to 484 impl
that the dimension of the system considered varies from
to 969. This is because the evolution of each orientat
vector is governed by a set of two coupled nonautonom
nonlinear ordinary differential equations. We provide n
merical evidence that the invariant properties of the attra
remain unchanged even when we increase the numbe
orientation vectors. We present plausible explanations
these results in terms of the forms of the averages repres
ing the rheological parameters and the nonlinear coupling
the averages and individual orientations.

CHAOS IN SUSPENSION RHEOLOGY

We use the results of Batchelor@13#, as modified by Berry
and Russel@14#, for the equations governing the dynamics
a slender body in an infinite expanse of fluid. These eq
tions have physical meaning in the case of dilute suspens
in which particle-particle interactions are neglected. Phy
cally this corresponds to the limitnl3!1, where ‘‘n’’ is the
number density of the particles in the suspension and ‘‘l’’ is
half the length of the slender body. Since we neglect parti
particle interactions, the rheological parameters represen
erages over the instantaneous orientations of the part
alone. The rheological parameters show no dependence
the spatial distribution of the particles in the dilute lim
since particle-particle interactions are not taken into acco
Hence the spatial distribution of the particles is immateria
long as the distribution is uniform withn particles per unit
volume. The particles are assumed to be sufficiently sm
that the boundaries of the physical apparatus containing
suspension do not significantly affect the rheology of
bulk of the suspension. The experimental feasibility of stu
ing the dynamics and rheology of small particles under
effect of constant external force fields has been demonstr
by a number of authors@15–20#. The extension to periodic
external forces, as studied in this paper, should not pose
additional difficulties.

Under these conditions in a simple shear flow, the eq
tions governing the dynamics of a periodically forced slen
body in spherical coordinates are@11#

u̇5& sinu cosu sinf cosf1~k1 cosu cosf

1k2 cosu sinf2k3 sinu!cos~vt !,

ḟ52& sin2 f1S 2k1

sinf

sinu
1k2

cosf

sinu D cos~vt !. ~1!
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In the above equationsu andf are the polar and azimutha
angles made by the unit vector which represents the orie
tion of the particle at the instantt. A typical slender rod has
length 2l and radiusa. k1 , k2 , andk3 are the components o
the orientation-independent part of the external torque, anv
is the frequency of the external driver. The undisturbed
locity profile of the flow is chosen asv05ġyi whereġ is the
shear rate,y is they coordinate, andi is the unit vector in the
x direction. Since the rheological parameters of suspens
of orientable particles are generally determined by the ori
tations of the particles alone, and are unaffected by th
translatory motion, we choose a coordinate system wh
moves along with the particle and thus neglect any tran
tory motion of the particle. The singularity in Eq.~1! for f
may be removed for computational purposes by takingf1
5f sinu. The above equations are dimensionless and sc
as follows:

Length l
Velocity lġ

&
Force 8

3&
phsl

2ġ
1

ln~2r!

Torque 8

3&
phsl

3ġ
1

ln~2r!

Time &

ġ

wherehs is the solvent viscosity,l is half the length of the
rod, andr is the aspect ratio of the particle. In this system t
orientation of the particles evolves chaotically for certa
ranges of values of the parametersk1 , k2 , andk3 and initial
conditions ofu and f @11#. The system shows a quasiper
odic transition to chaos in this range. In this system, trans
chaos also exists, originating from the collision of a sta
nonchaotic attractor with a chaotic attractor. The existenc
such complex behavior in this system, which is the simpl
of a class of systems, is indicative of the possibility for t
class of systems considered to exhibit a wide variety of c
otic properties. Further, this system falls into that class
systems for which fluctuations in averages may exist, as
cussed by Bunimovich and Jiang@12#. Chaotic dynamics ex-
hibited by similar systems shows potential for practical a
plications like particle separation based on shape@21# and
the possibility of intelligent rheology@22#.

Since the results of computations of the evolution of t
above system of equations are not easily accessible to ex
mental verification, the effects of these chaotic orientat
distributions on rheological parameters like the viscome
material functions were also studied@23#. The apparent vis-
cosities and normal stress differences are important mat
functions which characterize the rheology of a suspensio
shear flows, and which can be measured by a viscometer
periodically forced dilute suspensions of non-Brownian sle
der rods in a simple shear flow, these material functions h
expressions in terms of certain orientation averages as g
below @notations as in Eq.~1!# @23#:
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6604 PRE 60K. RADHAKRISHNAN et al.
@h1#575̂ sin4u sin2 2f&1300&k1 cos~vt !

3@^sin3u sinf cos2f&2^sinu sinf&#

175&k2 cos~ct !^sin4u sin2 2f&175&k3 cos~vt !

3^sinu sin 2u sin 2f&, ~2!

@h2#575̂ sin4u sin2 2f&1150&k1 cos~vt !

3^sin3u sin 2f cosf&1300&k2 cos~vt !

3@^sin3u sin2f cosf&2^sinu cosf&#

175&k3 cos~vt !^sinu sin 2u sin 2f&, ~3!

@t1#5150@^sin4u cos2f sin 2f&2^sin2u cos2u sin 2f&#

1300&k1 cos~vt !@^sin3u cos3f&2^sinu cosf&

2^sinu cosf cos2u&#1300&k2 cos~vt !

3@^sin3u sinf cos2f&2^sinu sinf cos2u&#

1300&k3 cos~vt !@^sin2u cos2f cosu&1^cosu&

2^cos3u&#, ~4!

@t2#5150@^sin4u sin2f sin 2f&2^sin2u cos3u sin 2f&#

1300&k1 cos~vt !@^sin3u sin2f cosf&

2^sinu cos2u cosf&#1300&k2 cos~vt !

3@^sin3u sin3f&2^cosu&2^sinu sinf cos2u&#

1300&k3 cos~vt !@^sin2u sin2f cosu&1^cosu&

2^cos3u&#, ~5!

The angular brackets represent orientation average
quantities over various possible orientations of the partic
Kumar@24# studied the case when the particles are aligne
81 various directions, and evaluated the averages by
cretizing theuf space into 81 grids. This has been done
dividing the range@0, p# of u by @a0 ,a1 ,...,a9#, where

ai5cos21 bi , for i 50,1, . . . ,9

and

bj5211 j ~2cosp1cos 0!/9, for j 50,1, . . . ,9,

and the range@0,2p# of f into nine equal intervals of width
2p/9. He started off from a set of 81 particles uniform
distributed in phase space initially with one particle in ea
bin. Each particle, in principle, can represent an infinite nu
ber of particles aligned in a common direction. If (u i ,f j )
describes the particle orientation at timet for i, j
51,2, . . . ,81, then the orientation average ofB(u,f) at
time t is given by

^B~u,f!&5
**B~u,f!d~u2u i !d~f2f j !d~cosu!df

**d~u2u i !d~f2f j !d~cosu!df

5
1

81(
i 51

9

(
j 51

9

B~u i ,f j !. ~6!
of
s.
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is-
y
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Here, the discretization of theuf space is used to distribut
the particles initially, and this distribution becomes closer
the continuous uniform distribution as we increase the nu
ber of orientation vectors. The evolution of each of the d
tributed particles was then calculated using the evolut
equations~1! with a standard Runge-Kutta method with a
adaptive step size@25#. Each one of the orientation averag
at timet is calculated using the orientation description of t
81 particles at timet according to Eq.~6!. The numerical
integration of Eq.~1! in single precision was shown to b
equivalent to treating Eqs.~1! as Langevin equations with
weak Brownian motion, as Kumar was able to reproduce
results of Leal and Hinch@3# ~also see Ref.@23#! for weak
Brownian motion. Note the nonlinear coupling between t
expressions for the rheological parameters, namely Eqs.~2!–
~5!, and the equations for the evolution of the individu
orientation vectors, namely, Eqs.~1!. We note that both of
these sets of equations contain the parametersk1 , k2 , and
k3 , and hence the nonlinear interaction between these
rameters can result in a low-dimensional chaotic attractor
the rheological parameters.

As a first step in analyzing the effects of the chaotic d
namics on the rheology, in this work we have studied a s
pension of slender rods with the number of directions
alignment varying from 16 to 484. Kumar and Ramamoh
@23# provided numerical evidence for the existence of cha
in the rheological parameters whenk15k350 andk2 , vary-
ing in the range 0<k2<0.30 in steps of 0.01, when the pa
ticles are aligned in 81 directions. However, Kumar and R
mamohan@23# did not provide numerical evidence for th
existence of a low-dimensional attractor in their wor
Hence, in this paper, we consider the typical casesk15k3
50 andk250.21, withv51. We studied the time series o
@t1#, @t2#, @h1#, and @h2# by taking a minimum of
ts(10210.4d) number of data points with a sampling timets ,
which is chosen such that the autocorrelation time lies
tween 1 and 10, whered is the approximate dimension of th
attractor of the time series of the appropriate rheological
rameter. In order to eliminate the possibility of any transie
in the chaotic case, we eliminated the first 15 000 points
the Poincare` section from the time series. All the tests we
performed using the software ‘‘Chaos Data Analyzer Prof
sional Version 2.1’’ of the Academic Software Library of th
American Physical Society.

RESULTS AND DISCUSSION

We estimated the correlation dimension of the attrac
using the Grassberger-Procaccia algorithm with a minim
of 102.010.4d points @26,27# ~Fig. 1!. We also performed a
false nearest neighbors test, and found that after an em
ding dimension of 3–4, the number of false nearest nei
bors reduced to a plateau near zero~Fig. 2!. We also per-
formed a nonlinear prediction test, and found that with
embedding dimension of around 5 or 6, the nonlinear pred
tion error decreased~Fig. 3!. We also performed a principa
component analysis of the time series for each of the f
rheological parameters, and found that there were about t
principal eigenvalues of the correlation matrix~Fig. 4!. Upon
increasing the number of initial orientation vectors, we fou
that the fractal dimension of all the rheological paramet
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settled down to values between 3.5 and 4.0~Fig. 5!. All the
tests were performed on each of the four time series, and
results were consistent.

We have treated the case of the number of directions
alignment equal to 400 separately, and have studied this
in detail for each parameter. In each case, we observed
there were no sharp peaks in the probability distribution, a
that the data could not be fitted by lower order polynomia
The power spectra of the data, which show broadband no
also confirm the existence of the chaos in the rheolog
parameters. We also observed that the Lyapunov expon
which is a measure of the sensitivity of the system to

FIG. 1. Plot showing the determination of the correlation dime
sion of the rheological parameter@h1# when the particles are
aligned in 400 directions fork15k350, k250.21, andv51.

FIG. 2. Plot of percentage false nearest neighbors of the pa
eter@h1# with embedding dimension when the particles are align
in 400 directions fork15k350, k250.21, andv51.
he

of
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d
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initial conditions of@t1#, @t2#, @h1#, and@h2#, were more
or less similar and positive. The Lyapunov exponents a
correlation dimension of these parameters fork250.21 when
the particles are aligned in 400 directions are given in Ta
I.

Some typical phase-space plots, the plots of time der
tive X8 versusX at each data point; Return maps, the plot
the values of the time series versus the previous value of
time series when its derivative is equal to a constant for
rheological parameters when the particles are aligned in
directions are given in Figs. 6 and 7. The range of the val
explored by@h1#, @h2#, @t1# and@t2# remains more or less

-

m-
d

FIG. 3. Plot of the average prediction error of the time series
the parameter@h1# when the particles are aligned in 400 directio
for k15k350, k250.21, andv51.

FIG. 4. Plot of the eigenvalues of the correlation matrix of t
parameter@h1# when the particles are aligned in 400 directions f
k15k350, k250.21, andv51.
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6606 PRE 60K. RADHAKRISHNAN et al.
same with an increasing number of initial orientation vecto
Figure 8 shows a plot of@h1# versus@h2# for different num-
bers of initial orientations, indicating that the range of valu
explored by@h1# and @h2# remain approximately the same

We generated six sets of surrogate data for the param
@h1#. This was done by randomizing the phase of the ti
series such that the resulting data had the same power s
trum and autocorrelation, but a different probability distrib
tion. We observed that the mean of the dimension of the
of surrogate data was 3s away from the dimension of the
original data, and the dimension of the data was in all ca
lower than the dimension of the surrogate data sets, and
the existence of nonlinear structure is statistically significa

To provide some reasoning for the reduction of a syst
of 949 dimensions to an attractor of about 3.6 dimensio
we plotted@h1#, @h2#, @t1#, and@t2# as functions ofu and
f ~Fig. 9!. We observe from these figures that there ar
number of peaks and valleys in each of the plots, so that o
a fraction of the orientations at any instant contribute sign
cantly to values of@h1#, @h2#, @t1#, and@t2# away from the

FIG. 5. Plot of the correlation dimension for@h1# as a function
of the number of directions of alignment of the particles fork1

5k350, k250.21, andv51.

TABLE I. Lyapunov exponents and correlation dimension f
the parameters@h1#, @h2#, @t1#, and @t2# for k15k350, k2

50.21, andv51 when the particles are aligned in 400 direction

@h1# @h2# @t1# @t2#

Correlation
dimension

3.620 3.557 4.167 3.234

Lyapunov
exponent

0.276 0.150 0.250 0.208

60.007 60.006 60.006 60.007
.

s

ter
e
ec-
-
et

es
us
t.

s,

a
ly
-

mean. The remaining set of orientation vectors do not c
tribute significantly to the values of@h1#, @h2#, @t1#, and
@t2# and can be considered as contributing a noise term
the rheological parameter. This coupled with the structure
the attractors observed for aligned distributions reported
Ref. @28#, led probably to only a fraction of the orientatio
vectors playing significant roles in the final attractor. Th
fraction of significant orientation vectors thus may be go
erned by a system of the dimension observed in this wo
while the remaining directions contribute only a noise ter
Note the nonlinear coupling between the expressions for
rheological parameters, namely, Eqs.~2!–~5!, and the equa-
tions for the evolution of the individual orientation vector
namely, Eqs.~1!. We note that both these sets of equatio
contain the parametersk1 , k2 , andk3 , and hence the non

FIG. 6. Phase-space plot of@h1# when particles are aligned in
400 directions fork15k350, k250.21, andv51. Plot of @h1# vs
derivative of@h1#.

FIG. 7. Return map of@h1# when particles are aligned in 40
directions fork15k350, k250.21, andv51. Plot of @h1# vs the
previous value of@h1# when its derivative is a constant.

.
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linear interaction between these parameters can result
low-dimensional chaotic attractor for the rheological para
eters@29,30#.

IMPLICATIONS FOR CHAOS THEORY

Suspension rheology provides a standard physically r
izable system of a spatially extended system, and sus

FIG. 8. ~a! Plot of @h1# vs @h2# when particles aligned in 225
directions fork15k350, k250.21, andv51. ~b! Plot of @h1# vs
@h2# when particles aligned in 400 directions fork15k350, k2

50.21, andv51.
a
-

l-
n-

sions under conditions in which individual particles sho
chaotic dynamics provide an excellent model system to
vestigate the various possibilities of spatiotemporal ch
and nontrivial collective behavior. The system of a dilu
suspension (nl3!1) of periodically forced weak Brownian
slender rods in a simple shear flow is a model system
which individual particles in the chaotic parametric regim
of their orientations constitute individually chaotically var
ing uncoupled oscillators. For nonspherical particles, the
entation averages discussed above, over a finite numbe
orientations, represent averages over an infinity of osci
tors, since in a distribution with particles aligned in only
few common directions each particle can in principle rep
sent an infinite number of particles aligned along the sa
direction. Our results presented above show that a syste
uncoupled oscillators can settle down to a low-dimensio
attractor of appropriate averages, and may be the first
ample of a physically realizable system, showing evidence
low-dimensional chaos in appropriate experimentally m
surable averages.

The study of the rheology of a dilute suspension of sp
roids in a simple shear flow as a model system to stu
aspects of spatiotemporal chaos has several advantages
other model systems. First, unlike the various systems c
sidered in the literature, the present system is a physic
realizable one. Second, it allows the consideration of ori
tation averages over finitely many orientations, in place
spatial averages over an infinite number of spatial positio
since, in an aligned suspension, each particle can repres
large number of particles aligned along the same direct
Third, the time scale of the fluctuations of the oscillators
real time can be adjusted to any desired value by suita
adjusting the shear rate. Hence if chaos can be shown to b
possible in dilute suspensions of periodically forced sp
roids, this may be the first system to demonstrate the po
bility of nontrivial chaotic collective behavior. Fourth, in th
case of periodically forced suspensions of spheroids, in
vidual particles can, in principle, be controlled to oscilla
chaotically as desired@23,28#; also, for orientation averages
‘‘the law of large numbers’’ is not, in principle, applicable
Fifth, in suspension models of spatially extended syste
the effect of local correlations can be incorporated by c
sidering particle-particle interactions, and nearest neigh
coupling can be approximated by weak interactions in su
ciently dilute suspensions. Sixth, the conditions under wh
appropriate spatial averages of a spatially extended sys
vary chaotically can be studied by considering the conditio
under which the orientation averages of individually chao
cally varying orientations vary chaotically; numerical sim
lations for the latter are likely to be simpler than those
other models considered so far in the literature. Seventh,
dependence of the rheological parameters on the orienta
is such that only a fraction of the orientations contribu
significantly to the rheological parameters. This, coup
with the nonlinear interaction between the expressions
the rheological parameters and the expressions for the i
vidual spheroids in terms of the parametersk1 , k2 , andk3 ,
provides a plausible explanation for the evolution of t
rheological parameters being governed by a low-dimensio
attractor.
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FIG. 9. Plot of@h1#, @h2#, @t1#, and@t2# as functions ofu andf for k15k350, k250.21,v51, andt50.
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CONCLUSION

We have reviewed our results regarding the existence
chaos in the rheological parameters of periodically forc
dilute suspensions of slender rods or spheroids in sim
shear flow. An example of a physically realizable system
been presented to show that a spatially extended syste
uncoupled chaotic oscillators can exhibit a chaotic nontriv
collective behavior. Numerical evidence for the existence
a low-dimensional attractor in the rheological parameters
also been presented. This system may be the first examp
a physically realizable system which may show lo
dimensional chaos in suitable experimentally measurable
in
of
d
le
s
of
l
f
s
of

a-

rameters which represent averages over a large numbe
uncoupled chaotic oscillators. The advantages of this
ample system over existing ones as an ideal model syste
study aspects of spatiotemporal chaos and nontrivial col
tive behavior have also been discussed.
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